

Mapping Guidelines

v1.3

Last updated: 12 June 06
by pospi - http://pospi.spadgos.com

This document contains general guidelines for experienced mappers on
the extra components of Furious Steals maps. Please note that unrealEd
must be run with the switch –mod=furiousSteals for these components to
become available. The easiest way to do this is probably to run the editor
batch file in UT2004\furiousSteals.

Pathnode Placing... 2
Player Starts .. 2
Vehicle Handling Volumes... 3
Hideouts .. 4
Physics Objects... 5
Street Signs ..12
Traffic Lights ...12
Signs..12

 - 1 -

http://pospi.spadgos.com/

Pathnode Placing

Pathnodes are used for a couple of different things within the game and so
you should be aware of them.

- Players will move to the nearest pathnode when they press their
reset key, so avoid placing them in tight areas or unlikely places.

- The gold in Steals and Rabbit gamemodes will use a random
pathnode as its spawn location. It is still ok to put pathnodes over
water though as the gold will reset if it is submerged or in a pain
causing volume. Again, don’t put them in unreachable places or
you’ll end up halting the game.

Player Starts

Player starts work much the same way as in UT2004, except that their
rotation is now irrelevant. Players will spawn facing the way their view is
pointing. This is so that they will typically spawn facing the direction they
died in and not lose any time via turning around.

 - 2 -

Vehicle Handling Volumes

Furious Steals provides an extra volume type that you can use to modify
the handling of vehicles. It extends from physicsVolume, so you can do
anything with it that you could do with a physicsVolume as well.

Making a volume to control handling on this ice patch

Add it as you would any normal volume, by right clicking on the volume
builder with a brush selected. The added properties it has are under the
furiousHandlingVolume group, and are as follows:

vehicleLatFrictionMult
This is a multiplier for the sideways friction of the tires when inside the
volume. Think of the default (1) as being a good amount for driving on a
standard road surface like asphalt or concrete. Values lower than 1 will
make cars slip around more, values greater than 1 will make them corner
harder and behave like they’re driving through glue or something. Note
that this setting also has an effect on their lean, as higher values will
make the tires grip more and thus the cars will have more of a tendency
to flip over. Setting this to 0 or less will probably crash the game.
Recommend about 0.2 for slippery areas - ice, oil etc; about 0.6 for grass
and such. Play with to your taste, of course.

vehicleSpeedMult
Maximum speed and engine power of the vehicle will be multiplied by this
amount when a vehicle is inside the volume. So obviously 1 is normal
speed. Values greater than 1 will be interpreted as 1 (so you cannot make
vehicles go faster than their normal speed), values of 0 or less will
probably crash the game.

 - 3 -

When using handling volumes, always try to give a clear indication as to
when they will have an effect on the player. In the above screenshot for
example, the volume is creating slip on an icy surface. It also certainly
pays to keep things consistent, so that similar areas have similar settings
on the same map.

Hideouts

Hideouts are the meat of the Steals gametype. You must place them down
manually, and one at a time will be chosen based on a few criteria. Note
that the same hideout will never be used twice in a row (unless there’s
only 1 of course).

To add a hideout, use the Actor>furiousHideoutCore>furiousHideout.
Never place a furiousHideoutCore down or you will break things.

FuriousHideouts have a bRandomiseRotation property which will put
them in a random rotation every time they spawn if true. Use this for
hideouts out in the open to make them different every time. Definitely
don’t use it for hideouts in the middle of the street or you might find them
spawning in very difficult ways.

 - 4 -

Physics Objects

Furious Steals allows you to put cool dynamic objects in your levels that
will work properly in multiplayer games. You can feel pretty free to put as
many as you like in, because they reset themselves after a certain time to
save on CPU resources. The exact time they take to reset can be
configured by the game’s host, and could be anywhere between 5 and 30
seconds depending on the speed of their computer and network
connection. Point is, go nuts.

Because there are lots of properties to play with, we’ve included a fair
number of preset objects for you to quickly and easily drop in your maps.
We’ll show you how to add those, how to build complex objects made up
of smaller parts, and finally how to use your own staticMeshes to make
your own fully dynamic environments.

General Guidelines

To save on bandwith even more, all our Karma objects start off disabled.
This means that you shouldn’t place them anywhere that would look
weird, and expect gravity to put them in the right place for you. If you
stick something up in the air, it will stay there until something runs into it.
It will even go back there when it’s reset.

Avoid going totally crazy with them and putting heaps in small areas. Try
to spread them out a bit so that old ones have a chance to reset before
the newer ones are disturbed. Remember that you still might totally lag
the game if lots of physics objects are being simulated at once.

When building compound objects (see later on), remember that if any part
of the object is bumped, the entire object will start moving. So again,
don’t use too many objects as part of a compound object because they
will all be simulated together and the entire object won’t reset until some
time after the last piece is left alone.

Adding a simple object

This is a pretty easy thing to do, and you should have no trouble. The
preset objects are under
Actor>KActor/FSKActorNeInterface/FSKActorNet/, and all you have to do
is select one, right click where you want to put it, and click ‘add
[whatever] here’. This path is actually contrary to the below diagram
which is from an old build that I was too lazy to update. Sorry.

 - 5 -

Where to find stuff.

Note that all these objects will snap to the grid, and their pivot points are
at the base so you can usually just click on the ground where you want
them to have them optimally placed.

Adding a compound object

Adding a compound object is initially much the same deal as for simple
objects. Our preset objects have been named to make things easier for
you, for example FS_serverBENTPOLE1P and FS_serverBENTPOLE2P
represent the two components of a bent pole. Anything named
[whatever]#P is basically a component.

Our presets have their pivots placed in the right place to match up if you
add them at the same location, so you can save yourself some hassle by
turning your grid size way up and then adding the objects at the same
grid position. There might also be other objects with their pivots set to
match up, for example FS_serverBigSign and a couple of the traffic lights
are set to match up with the bent pole pieces.

Feel free to make compound objects out of as many or few of whatever
pieces you like – it doesn’t matter if their pivots aren’t in the same place,
just move them to wherever you need them to be. Note that the
component objects don’t have to be touching, so you might be able to set
up some cool traps and such.

Once you’re done positioning your component objects, you need to add a
master object to tie them all together. Add an Actor/FSKActorGroup

 - 6 -

somewhere near your compound object so that you remember which
group is referencing which objects.

A sign made up of 3 components.

Now you need to tell the FSKActorGroup which objects to use. To do so,
you need to input the names of all the component objects into it (note:
when duplicating these groups the names should update for the duplicate,
but it pays to check to be sure).

You could do this by opening the properties of each component object,
going to Object>Name, closing that window, opening up the properties for
the FSKActorGroup, going to FSKActorGroup>Components and typing the
name. But that would be hard to remember.

I really recommend you download EditSelected, available here. It has a
simple ut4mod installer and adds a button to the toolbar that looks like a
couple of lists. Click it to open an object properties window that won’t shut
itself when you deselect the object.

Now you can have all your property windows open at once which makes
typing in those names a lot easier.

 - 7 -

http://members.lycos.co.uk/neai/

Properties.

Click ‘add’ next to the Components array in the FSKActorGroup’s
properties and then type the name of each object in exactly as it appears
in that object’s properties box and press enter. If you got it right, it will
change to show the full path for the object. If you got it wrong, it won’t do
anything or will possibly crash unrealEd.

Repeat as necessary for the other component objects, and you’re done!

Making your own objects, and advanced properties

This is for people who are feeling advanced. Remember through this
section that all the things I say you can fiddle with are ripe for fiddling
with on the default objects as well if you want to change certain things
about them. But don’t be a dick and make silly things like cardboard
boxes that weigh 100000 kilos and destroy vehicles instantly when they
fall on them.

If you want to make a physics object, add an Actor>KActor>
FSKActorNetInterface>FSKActorNet. This is the base class of all the
physics objects that will sync up properly on all machines.

You can only use staticMeshes for physics objects, and those meshes must
collide properly with karma (if they don’t they’ll just fall through the
ground or not move at all). To make this happen, you either need to have
imported your model with a collision model or you need to make your own
in unrealEd. If you don’t know how to import a collision model with your
model then the latter is probably easiest for you. For the record, I’m
pretty sure you can only model your own collision hulls in Maya.

Open up the staticMesh browser and find your staticMesh. (If you can’t
see it when you select it, go to the View menu, select Auto Frame
Selection and reselect it.) Go to View>Show Collision so you can see what
you’re doing. The only way to make collision models in unrealEd is to use

 - 8 -

the primitives in the first section of the Collision Tools menu. Experiment
and find the one that fits closest.

If none of them fit very well, you could consider using full karma collision
or splitting the object into subobjects. It will break into pieces with the
second method, but that might be cool too. Full karma collision is
potentially buggy, so check that vehicles don’t clip right through it or get
stuck in it or anything before you decide upon it (try turning down the
object’s KRestitution property in KParams to fix this if you can). To enable
full collision, set UseSimpleKarmaCollision to false.

Doing stuff to staticMeshes.

Back to the physics object itself. The one you added before I got
sidetracked will look like a box. Go into its properties because this is
where we do basically everything.

Because it’s easiest, I’ll just list the properties and what they do. Anything
not mentioned either shouldn’t be messed with or probably has no effect.
Change at your own risk.

Display

StaticMesh
the mesh to use for this object.
DrawScale
Multiply the size of the object by this number. DO NOT USE
DRAWSCALE3D.
Skins
Array of materials to put on the mesh. If you want to reskin
objects this is where to do it.

 - 9 -

FSKActorNet

bBlockedPath
Used for bot pathing. Since bots are relatively unsupported
anyway, should probably just leave it.
bCollisionDamage
Make sure this stays on.
bCriticalObject
This is to do with the server’s options, as servers may disable all
physics objects if they wish. If this is true, the physics object will
stay in the level as a static object even if physics objects are
disabled. If false, it will be deleted.
bRayTraceLighting
When true, the model will use the ‘dramatic’ lighting effect applied
to players and stuff.
InitialImpactEffect
An effect to play when the object is first disturbed. Can be any
actor as long as it destroys itself and has
RemoteRole=ROLE_None. Basically Emitters or xEmitters only.
InitialEffectOffset
Offset relative to pivot point to play the initial effect at. This is in
object coordinates (x=forward, y=left, z=up), and will take the
rotation of the object into account as well. Your best bet is to
measure this in your 3D modelling program as it will also scale by
the object’s DrawScale property and so mightn’t be right in the
editor if your drawScale isn’t 1.
InitialEffectRotation
Same deal, but rotation relative to the object’s rotation.
Pitch=32767 is straight up fyi.
RespawnRadius
How far around the object to check for players before resetting.

KActor
bOrientImpactEffect
If true, the impact effects will be oriented to the angle of impact.
Otherwise, they will all have the same (0,0,0) rotation.
ImpactEffect
Impact effect to play whenever the object is collided with. This
effect will play at the place of contact.
ImpactInterval
Minimum time between impact events (sounds, particles etc)
being called.
ImpactSounds
Sounds the object might play when hit. It will pick a random one
to play each time.
ImpactVolume
How loud said sounds are. They’ll fade off based on distance as
well, obviously.

Karma
KParams

 - 10 -

Karma parameters for this object. These are all the core
parameters that control the behaviour of the object. I’ll let this
wiki page do most of the talking, although really most times you’ll
only want to play with the following:

KMass – sets how heavy the object is and how much damage it
will do when it hits cars. 0.2 is quite light whilst 6 is pretty heavy.
Note that the size of the object also effects its weight so this is
more of a density value.
KFriction – how much the object will slide around and be
pushable by vehicles. Lower KMass values also make it slide more
since it’s not being pushed down as much.
KRestitution – how ‘springy’ the objects is – 0 for solid and 1 for
bouncy. If you’re using thin objects leave at 0 or they’ll get stuck
in stuff.
KActorGravScale – how much gravity effects this actor. Can
make it look unrealistic so only use if you really need to. I think if
you set negatives the game will crash, but I’m not sure.

DO NOT CHANGE:
bHighDetailOnly (=false)
bKDoubleTickRate (=true)
bClientOnly (=false)
KStartAngVel (=0,0,0)
KStartLinVel (=0,0,0)
KStartEnabled (=false)
KImpactThreshold (=300)

 - 11 -

http://wiki.beyondunreal.com/wiki/KarmaParams
http://wiki.beyondunreal.com/wiki/KarmaParams

Street Signs

Street signs are physics objects with some additional parameters.
Basically, you can change the name of the street by a property if you
want to be cool. This effect will only show in Direct3D, otherwise some
blurry indiscernible text will be there instead.

Note that setting Skins(0) for this actor won’t have any effect, use
signFallBack instead.

bScriptStreetName can be set to false to disable the text if you want to
use the object for another kind of sign or just put your own premade
texture on it.

streetName

The name of the street. The name should be in capitals, with
lowercase ‘st’, ‘rd’ etc.

bScriptStreetName
If false, no rendering of the street’s name will happen and the
material specified for ‘signFallBack’ will be used regardless.

signFallBack
Fallback material for players who can’t see scriptedTextures. Also
used if bScriptStreetName is false.

signBackground
Background image to render under the text.

Traffic Lights

Just so that you are aware, the traffic light objects will pick one of two
materialSequences for their skin. This is to mix up the lights so that not
all are green at the same time. In any case, if you try to apply new skins
onto the traffic lights, chances are they will be overridden.

Signs

Use the FS_serverParkingSign actor for square signs. There are a bunch of
alternate textures in furiousPhysicsObjects.Signs.* that you can apply
instead of the parking sign texture via the actor’s skins array. Feel free to
make your own as well. The same deal applies to the big sign preset –
plenty of extra textures to go around.

 - 12 -

	 Pathnode Placing
	Player Starts
	 Vehicle Handling Volumes
	Hideouts
	 Street Signs
	Traffic Lights
	Signs

